Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
African Journal of Infectious Diseases ; 16(2 Suppl):46-58, 2022.
Article in English | CAB Abstracts | ID: covidwho-20231781

ABSTRACT

Background: Lassa fever is an acute viral haemorrhagic disease caused by the Lassa virus (LASV). It is endemic in West Africa and infects about 300,000 people each year, leading to approximately 5000 deaths annually. The development of the LASV vaccine has been listed as a priority by the World Health Organization since 2018. Considering the accelerated development and availability of vaccines against COVID-19, we set out to assess the prospects of LASV vaccines and the progress made so far. Materials and Methods: We reviewed the progress made on twenty-six vaccine candidates listed by Salami et al. (2019) and searched for new vaccine candidates through Google Scholar, PubMed, and DOAJ from June to July 2021. We searched the articles published in English using keywords that included "vaccine" AND "Lassa fever" OR "Lassa virus" in the title/. Results: Thirty-four candidate vaccines were identified - 26 already listed in the review by Salami et al. and an additional 8, which were developed over the last seven years. 30 vaccines are still in the pre-clinical stage while 4 of them are currently undergoing clinical trials. The most promising candidates in 2019 were vesicular stomatitis virus-vectored vaccine and live-attenuated MV/LASV vaccine;both had progressed to clinical trials. Conclusions: Despite the focus on COVID-19 vaccines since 2020, LASV vaccine is under development and continues to make impressive progress, hence more emphasis should be put into exploring further clinical studies related to the most promising types of vaccines identified.

2.
Topics in Antiviral Medicine ; 31(2):141, 2023.
Article in English | EMBASE | ID: covidwho-2319964

ABSTRACT

Background: More than 12 billion doses of COVID-19 vaccine administrations and over 630 million natural infections should have developed adequate levels of herd immunity over the last three years. However, there have been many new waves of coronavirus infections. The development of safe and effective vaccines to control breakthrough SARS-CoV-2 infections remain an urgent priority. We have developed a recombinant VSV vector-based vaccine to fulfill this worldwide need. Method(s): We have used a recombinant vesicular stomatitis virus (rVSV)-based prime-boost immunization strategy to develop an effective COVID-19 recall vaccine candidate. We have constructed an attenuated recombinant VSV genome carrying the full-length Spike protein gene of SARS-CoV-2. Adding the honeybee melittin signal peptide (msp) at the N-terminus enhanced the protein expression and adding the VSV G protein transmembrane domain and the cytoplasmic tail (Gtc) at the C-terminus of the Spike protein allowed efficient incorporation of the Spike protein into pseudotype VSV. Result(s): In immunized mice, rVSV with chimeric rVSV-msp-S-Gtc induced high levels of potent neutralizing antibodies (nAbs) and CD8+ T cell responses, while the full-length Spike with Gtc proved to be the superior immunogen. More importantly, rVSV-msp-S-Gtc-vaccinated animals were completely protected from subsequent SARS-CoV-2 challenges. Furthermore, rVSV-Wuhan and rVSV-Delta vaccines, and an rVSV-Trivalent (mixed rVSV-Wuhan, -Beta and -Delta) vaccine elicited potent nAbs against live SARS-CoV-2 Wuhan (USAWA1), Beta (B.1.351), Delta (B.1.617.2) and Omicron (B.1.1.529) viruses. Heterologous boosting of rVSV-Wuhan with rVSV-Delta induced strong nAb responses against Delta and Omicron viruses, with the rVSV-Trivalent vaccine consistently inducing effective nAbs against all the SARS-CoV-2 variants tested. All rVSV-msp-S-Gtc vaccines also elicited an immunodominant Spike-specific CD8+ T cell response. Conclusion(s): rVSV vaccines targeting SARS-CoV-2 variants of concern can be considered as an effective booster vaccine in the global fight against COVID-19.

3.
J Virol ; 97(2): e0003523, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2228038

ABSTRACT

Asp-Glu-Ala-Asp (DEAD) box helicase 3 X-linked (DDX3X) plays important regulatory roles in the replication of many viruses. However, the role of DDX3X in rhabdovirus replication has seldomly been investigated. In this study, snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus, was used to study the role of DDX3X in rhabdovirus replication. DDX3X was identified as an interacting partner of SHVV phosphoprotein (P). The expression level of DDX3X was increased at an early stage of SHVV infection and then decreased to a normal level at a later infection stage. Overexpression of DDX3X promoted, while knockdown of DDX3X using specific small interfering RNAs (siRNAs) suppressed, SHVV replication, indicating that DDX3X was a proviral factor for SHVV replication. The N-terminal and core domains of DDX3X (DDX3X-N and DDX3X-Core) were determined to be the regions responsible for its interaction with SHVV P. Overexpression of DDX3X-Core suppressed SHVV replication by competitively disrupting the interaction between full-length DDX3X and SHVV P, suggesting that full-length DDX3X-P interaction was required for SHVV replication. Mechanistically, DDX3X-mediated promotion of SHVV replication was due not to inhibition of interferon expression but to maintenance of the stability of SHVV P to avoid autophagy-lysosome-dependent degradation. Collectively, our data suggest that DDX3X is hijacked by SHVV P to ensure effective replication of SHVV, which suggests an important anti-SHVV target. This study will help elucidate the role of DDX3X in regulating the replication of rhabdoviruses. IMPORTANCE Growing evidence has suggested that DDX3X plays important roles in virus replication. In one respect, DDX3X inhibits the replication of viruses, including hepatitis B virus, influenza A virus, Newcastle disease virus, duck Tembusu virus, and red-spotted grouper nervous necrosis virus. In another respect, DDX3X is required for the replication of viruses, including hepatitis C virus, Japanese encephalitis virus, West Nile virus, murine norovirus, herpes simplex virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Because DDX3X has rarely been investigated in rhabdovirus replication, this study aimed at investigating the role of DDX3X in rhabdovirus replication by using the fish rhabdovirus SHVV as a model. We found that DDX3X was required for SHVV replication, with the mechanism that DDX3X interacts with and maintains the stability of SHVV phosphoprotein. Our data provide novel insights into the role of DDX3X in virus replication and will facilitate the design of antiviral drugs against rhabdovirus infection.


Subject(s)
DEAD-box RNA Helicases , Perciformes , Phosphoproteins , Vesiculovirus , Virus Replication , Animals , DEAD-box RNA Helicases/genetics , Fishes , Perciformes/virology , RNA, Small Interfering , Vesiculovirus/pathogenicity , Vesiculovirus/physiology , Viral Proteins
4.
African Journal of Infectious Diseases ; 16(2 Supplement):46-58, 2022.
Article in English | EMBASE | ID: covidwho-2204815

ABSTRACT

Background: Lassa fever is an acute viral haemorrhagic disease caused by the Lassa virus (LASV). It is endemic in West Africa and infects about 300,000 people each year, leading to approximately 5000 deaths annually. The development of the LASV vaccine has been listed as a priority by the World Health Organization since 2018. Considering the accelerated development and availability of vaccines against COVID-19, we set out to assess the prospects of LASV vaccines and the progress made so far. Material(s) and Method(s): We reviewed the progress made on twenty-six vaccine candidates listed by Salami et al. (2019) and searched for new vaccine candidates through Google Scholar, PubMed, and DOAJ from June to July 2021. We searched the articles published in English using keywords that included "vaccine" AND "Lassa fever" OR "Lassa virus" in the title/. Result(s): Thirty-four candidate vaccines were identified - 26 already listed in the review by Salami et al. and an additional 8, which were developed over the last seven years. 30 vaccines are still in the pre-clinical stage while 4 of them are currently undergoing clinical trials. The most promising candidates in 2019 were vesicular stomatitis virus-vectored vaccine and live-attenuated MV/LASV vaccine;both had progressed to clinical trials. Conclusion(s): Despite the focus on COVID-19 vaccines since 2020, LASV vaccine is under development and continues to make impressive progress, hence more emphasis should be put into exploring further clinical studies related to the most promising types of vaccines identified. Copyright © 2022, African Traditional, Herbal Medicine Supporters Initiative. All rights reserved.

5.
Gastroenterology ; 162(7):S-886-S-887, 2022.
Article in English | EMBASE | ID: covidwho-1967382

ABSTRACT

Introduction: Coronavirus Disease 2019 (COVID-19) is an ongoing public health crisis that has sickened or precipitated death in millions. The etiologic agent of COVID-19, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), infects the intestinal epithelium and can persist long after the respiratory infection has cleared. We previously observed that intestinal SARS-CoV-2 infection levels varied by individual donors and did not correlate positively with ACE2, the cognate SARS-CoV-2 receptor. Therefore we aimed to delineate host factors that influence viral infection in the intestine. Methods: Published dataset GSE75214 was downloaded and expression levels of select genes were querried. Primary human ileal spheroids (enteroids), derived from healthy donors and patients with Crohn's disease (CD), were grown on 2D transwells until confluent. Cells were differentiated for 3d before infection with a modified vesicular stomatitis virus expressing the SARS-CoV-2 spike protein (VSV-SARS-CoV-2) and GFP for 1h at a multiplicity of infection of ~0.5. Cells were harvested pre-infection and 24h after infection and expression of select genes was performed by qRT-PCR. Expression data were fit to a linear regression model to predict viral RNA levels. Results: Small intestine biopsy samples from CD patients demonstrated a reduction in ACE and an increase in CTSB and CTSL expression during active inflammation compared to healthy controls. Viral RNA expression did not correlate with ACE2 expression in CD enteroids. A subset of CD enteroids exhibited enhanced protease expression (TMPRSS2, TMPRSS4, CTSL), each of which correlated with higher viral RNA levels (P=0.04, P=0.002, P=0.006, respectively). Expression of these proteases was higher in the pre-infection for the sample subset. Principle component analysis of uninfected expression data demonstrated these samples clustered separately from the others, with the difference driven by TMPRSS2, TMPRSS4, and CTSL. Modeling viral RNA levels based on gene expression revealed expression levels of these proteases are a predictive expression signature. Conclusions: Host protease expression can predict SARS-CoV-2 infection and represent potential therapeutic targets for COVID-19. This is consistent with the recent report showing that cathepsin inhibition reduces SARS-CoV-2 spike-mediated syncytia formation. High expression of these proteases in the intestine may also be a novel biomarker for the risk of intestinal complications associated with COVID-19.(Figure Presented)RNA data from dataset GSE75214 demonstrating reduced ACE2 and increased CTSB and CTSL in patients with Crohn's disease during active inflammation compared to healthy controls. (Figure Presented) Enteroids from healthy control donors and patients with Crohn's disease were grown in 2D transwells and expression of indicated genes was assessed in pre-infection (A) and after infection with VSV-SARS-CoV-2 (B)

6.
Topics in Antiviral Medicine ; 30(1 SUPPL):7-8, 2022.
Article in English | EMBASE | ID: covidwho-1880864

ABSTRACT

Background: SARS-CoV-2 infection in immunocompromised individuals has been associated with prolonged virus shedding and the development of novel viral variants. Rapamycin and rapamycin analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA-approved for use as mTOR inhibitors in multiple clinical settings, including cancer and autoimmunity, but a common side effect of these drugs is immunosuppression and increased susceptibility to infection. Immune impairment caused by rapalog use is traditionally attributed to their impacts on T cell signaling and cytokine production. Methods: We used replication-competent SARS-CoV-2 and HIV pseudotyped with betacoronavirus Spike proteins to assess how rapalog pretreatment of cells ex vivo and rodent animals in vivo impacts susceptibility to Spike-mediated infection. Results: We show that exposure to rapalogs increases cellular susceptibility to SARS-CoV-2 infection by antagonizing components of the constitutive and interferon-induced cell-intrinsic immune response. Pre-treatment of cells (including human lung epithelial cells and primary human small airway epithelial cells) with rapalogs promoted the early stages of SARS-CoV-2 infection by facilitating Spike-mediated virus entry. Rapalogs also boosted infection mediated by Spike from SARS-CoV and MERS-CoV in addition to hemagglutinin of influenza A virus and glycoprotein from vesicular stomatitis virus, suggesting that rapalogs downmodulate antiviral defenses that pose a common barrier to these viral fusion proteins. By identifying one rapalog (ridaforolimus) that lacks this function, we demonstrate that the extent to which rapalogs promote virus entry is linked to their capacity to trigger the lysosomal degradation of IFITM2 and IFITM3, intrinsic inhibitors of virus-cell membrane fusion. Mechanistically, rapalogs that promote virus entry inhibit the mTOR-mediated phosphorylation of TFEB, a transcription factor controlling lysosome biogenesis and lysosomal degradation pathways such as autophagy. In contrast, TFEB phosphorylation by mTOR was not inhibited by ridaforolimus. In the hamster model of SARS-CoV-2 infection, injection of rapamycin four hours prior to virus exposure resulted in elevated virus titers in lungs, accelerated weight loss, and decreased survival. Conclusion: Our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating a lysosome-mediated suppression of intrinsic immunity.

7.
Appl Environ Microbiol ; 87(3)2021 01 15.
Article in English | MEDLINE | ID: covidwho-1035279

ABSTRACT

Airborne disinfection of high-containment facilities before maintenance or between animal studies is crucial. Commercial spore carriers (CSC) coated with 106 spores of Geobacillus stearothermophilus are often used to assess the efficacy of disinfection. We used quantitative carrier testing (QCT) procedures to compare the sensitivity of CSC with that of surrogates for nonenveloped and enveloped viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mycobacteria, and spores, to an aerosolized mixture of peroxyacetic acid and hydrogen peroxide (aPAA-HP). We then used the QCT methodology to determine relevant process parameters to develop and validate effective disinfection protocols (≥4-log10 reduction) in various large and complex facilities. Our results demonstrate that aPAA-HP is a highly efficient procedure for airborne room disinfection. Relevant process parameters such as temperature and relative humidity can be wirelessly monitored. Furthermore, we found striking differences in inactivation efficacies against some of the tested microorganisms. Overall, we conclude that dry fogging a mixture of aPAA-HP is highly effective against a broad range of microorganisms as well as material compatible with relevant concentrations. Furthermore, CSC are artificial bioindicators with lower resistance and thus should not be used for validating airborne disinfection when microorganisms other than viruses have to be inactivated.IMPORTANCE Airborne disinfection is not only of crucial importance for the safe operation of laboratories and animal rooms where infectious agents are handled but also can be used in public health emergencies such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. We show that dry fogging an aerosolized mixture of peroxyacetic acid and hydrogen peroxide (aPAA-HP) is highly microbicidal, efficient, fast, robust, environmentally neutral, and a suitable airborne disinfection method. In addition, the low concentration of dispersed disinfectant, particularly for enveloped viral pathogens such as SARS-CoV-2, entails high material compatibility. For these reasons and due to the relative simplicity of the procedure, it is an ideal disinfection method for hospital wards, ambulances, public conveyances, and indoor community areas. Thus, we conclude that this method is an excellent choice for control of the current SARS-CoV-2 pandemic.


Subject(s)
COVID-19/prevention & control , Disinfectants/pharmacology , Disinfection/methods , Mycobacterium/drug effects , SARS-CoV-2/drug effects , Spores, Bacterial/drug effects , Aerosols , Cell Line , Decontamination/methods , Geobacillus stearothermophilus/drug effects , Hydrogen Peroxide , Particle Size , Peracetic Acid , Steam
8.
Viruses ; 12(12)2020 12 08.
Article in English | MEDLINE | ID: covidwho-967014

ABSTRACT

Bats are a host and reservoir for a large number of viruses, many of which are zoonotic. In North America, the big brown bat (Eptesicus fuscus) is widely distributed and common. Big brown bats are a known reservoir for rabies virus, which, combined with their propensity to roost in human structures, necessitates testing for rabies virus following human exposure. The current pandemic caused by severe acute respiratory syndrome coronavirus 2, likely of bat origin, illustrates the need for continued surveillance of wildlife and bats for potentially emerging zoonotic viruses. Viral metagenomic sequencing was performed on 39 big brown bats and one hoary bat submitted for rabies testing due to human exposure in South Dakota. A new genotype of American bat vesiculovirus was identified in seven of 17 (41%) heart and lung homogenates at high levels in addition to two of 23 viscera pools. A second rhabdovirus, Sodak rhabdovirus 1 (SDRV1), was identified in four of 23 (17%) viscera pools. Phylogenetic analysis placed SDRV1 in the genus Alphanemrhavirus, which includes two recognized species that were identified in nematodes. Finally, a highly divergent rhabdovirus, Sodak rhabdovirus 2 (SDRV2), was identified in two of 23 (8.7%) big brown bats. Phylogenetic analysis placed SDRV2 as ancestral to the dimarhabdovirus supergroup and Lyssavirus. Intracranial inoculation of mouse pups with rhabdovirus-positive tissue homogenates failed to elicit clinical disease. Further research is needed to determine the zoonotic potential of these non-rabies rhabdoviruses.


Subject(s)
Chiroptera/virology , Phylogeny , Rhabdoviridae/classification , Animals , COVID-19/virology , Female , Genotype , Humans , Metagenomics , Mice , Rabies virus , Rhabdoviridae/isolation & purification , South Dakota , Viral Zoonoses/transmission
SELECTION OF CITATIONS
SEARCH DETAIL